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Random access codes (RACs)

n
p7→ m random access code

1. Alice encodes n bits into m and sends them to Bob (n > m).

2. Bob must be able to restore any one of the n initial bits with
probability ≥ p.

In this talk

1. We will consider only n
p7→ 1 codes (m = 1).

2. We will compare classical and quantum RACs:
I classical RAC: Alice encodes n classical bits into 1 classical bit,
I quantum RAC: Alice encodes n classical bits into 1 qubit.

In quantum case the state collapses after recovery of one bit, so we
may loose the other bits.
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Classical random access codes with
shared randomness
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Classical RACs

Classical versus quantum

Let us first consider classical RACs with shared randomness (SR) so
that later on we can compare them with quantum RACs with SR.

Complexity measures

We are interested in the worst case success probability of RAC.
However, it is simpler to consider the average case success
probability. In the next few slides we will see that there is a way
how to switch between these two.
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Different kinds of classical RACs

Definition
A pure classical n 7→ 1 RAC is an ordered tuple (E,D1, . . . , Dn)
that consists of encoding function E : {0, 1}n 7→ {0, 1} and n
decoding functions Di : {0, 1} 7→ {0, 1}.
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Different kinds of classical RACs

Definition
A pure classical n 7→ 1 RAC is an ordered tuple (E,D1, . . . , Dn)
that consists of encoding function E : {0, 1}n 7→ {0, 1} and n
decoding functions Di : {0, 1} 7→ {0, 1}.

Definition
A mixed classical n 7→ 1 RAC is an ordered tuple
(PE , PD1 , . . . , PDn) of probability distributions. PE is a
distribution over encoding functions and PDi over decoding
functions.
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Different kinds of classical RACs

Definition
A pure classical n 7→ 1 RAC is an ordered tuple (E,D1, . . . , Dn)
that consists of encoding function E : {0, 1}n 7→ {0, 1} and n
decoding functions Di : {0, 1} 7→ {0, 1}.

Definition
A classical n 7→ 1 RAC with shared randomness (SR) is a
probability distribution over pure classical RACs.
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Playing with randomness

Yao’s principle

min
µ

max
D

Prµ[D(x) = f(x)] = max
A

min
x

Pr[A(x) = f(x)]

The following notations are used:

I f - some function we want to compute,

I Prµ[D(x) = f(x)] – success probability of deterministic
algorithm D with input x distributed according to µ,

I Pr[A(x) = f(x)] – success probability of probabilistic
algorithm A on input x.
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Obtaining upper and lower bounds

Upper bound

We can take any input distribution µ0 that seems to be “hard” for
deterministic algorithms and find p such that

max
D

Prµ0 [D(x) = f(x)] ≤ p

Then according to Yao’s principle the worst case success probability
of the best probabilistic algorithm is upper bounded by p.

Lower bound
Any pure RAC with average case success probability p can be
turned into a RAC with shared randomness having worst case
success probability p by jointly randomizing the input (requires
n+ log n shared random bits). Thus we can obtain a lower bound
by randomizing any pure RAC.
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The “hardest” input distribution

Matching upper and lower bounds

The lower bound was obtained by simulating uniform input
distribution. Since any input distribution µ0 can be used for the
upper bound, we can use the uniform distribution as well – then
both bounds will match. Hence for pure random access codes
uniform input distribution is the “hardest”.

Conclusion

Best pure RAC for
uniformly distributed input

(average success prob.)

input
=⇒

randomization

Best RAC with SR
(worst case success prob.)
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Optimal classical RAC

Optimal decoding

I For each bit there are only four possible decoding functions:
D(x) = 0, D(x) = 1, D(x) = x, D(x) = NOTx.

I We cannot make things worse if we do not use constant
decoding functions 0 and 1 for any bits.

I We can always avoid using decoding function NOTx (by
negating the input before encoding).

Hence there is an optimal joint strategy such that Bob always
replays the received bit no matter which bit is actually asked.

Optimal encoding

Once Alice knows that Bob’s decoding function is D(x) = x, she
simply encodes the majority of all bits.
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Exact probability of success

Counting

Let us choose a string from {0, 1}n uniformly at random and mark
one bit at a random position.

What is the probability that the
value of the marked bit equals the majority of all bits?

Answer
Exactly:

p(2m) = p(2m+ 1) =
1
2

+
1

22m+1

(
2m
m

)
Using Stirling’s approximation:

p(n) ≈ 1
2

+
1√
2πn
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Probability of success

Exact probability: p(2m) = p(2m+ 1) = 1
2 +

(
2m
m

)
/22m+1

2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

0.6

0.7

0.8

0.9

pHnL
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Probability of success

Using Stirling’s approximation: p(n) ≈ 1
2 + 1/

√
2πn

2 3 4 5 6 7 8 9 10 11 12 13 14 15
n
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Probability of success

Using inequalities
√

2πn
(
n
e

)n
e

1
12n+1 < n! <

√
2πn

(
n
e

)n
e

1
12n

2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

0.6

0.7

0.8

0.9

pHnL
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Quantum random access codes with
shared randomness
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Bloch sphere
Alice encodes a classical bit string into a qubit state and sends it
to Bob. We will use the Bloch sphere to visualize these states.

Bloch vector

ÈΨ\
Θ

j

x

y

z

|ψ〉 =
(

cos θ2
eiϕ sin θ

2

)

0 ≤ θ ≤ π, 0 ≤ ϕ < 2π

m
~r = (x, y, z)
x = sin θ cosϕ
y = sin θ sinϕ
z = cos θ
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Bloch sphere
Alice encodes a classical bit string into a qubit state and sends it
to Bob. We will use the Bloch sphere to visualize these states.

Measurement

ÈΨ\
ÈΨ0\

ÈΨ1\

Α

d0

d1

|〈ψ1|ψ2〉|2 =
1
2
(1 + ~r1 · ~r2)

Pr[|ψ0〉 given |ψ〉] = |〈ψ0|ψ〉|2

=
1 + cosα

2
=
d1

2

Pr[|ψ1〉 given |ψ〉] = |〈ψ1|ψ〉|2

=
1− cosα

2
=
d0

2



Introduction Classical RACs Quantum RACs Numerical results Symmetric constructions Summary

Bloch sphere
Alice encodes a classical bit string into a qubit state and sends it
to Bob. We will use the Bloch sphere to visualize these states.

Measurement

ÈΨ\
ÈΨ0\

ÈΨ1\

Α

d0

d1

|〈ψ1|ψ2〉|2 =
1
2
(1 + ~r1 · ~r2)

Pr[|ψ0〉 given |ψ〉]

= |〈ψ0|ψ〉|2

=
1 + cosα

2
=
d1

2

Pr[|ψ1〉 given |ψ〉] = |〈ψ1|ψ〉|2

=
1− cosα

2
=
d0

2



Introduction Classical RACs Quantum RACs Numerical results Symmetric constructions Summary

Bloch sphere
Alice encodes a classical bit string into a qubit state and sends it
to Bob. We will use the Bloch sphere to visualize these states.

Measurement

ÈΨ\
ÈΨ0\

ÈΨ1\

Α

d0

d1

|〈ψ1|ψ2〉|2 =
1
2
(1 + ~r1 · ~r2)

Pr[|ψ0〉 given |ψ〉] = |〈ψ0|ψ〉|2

=
1 + cosα

2
=
d1

2

Pr[|ψ1〉 given |ψ〉] = |〈ψ1|ψ〉|2

=
1− cosα

2
=
d0

2



Introduction Classical RACs Quantum RACs Numerical results Symmetric constructions Summary

Bloch sphere
Alice encodes a classical bit string into a qubit state and sends it
to Bob. We will use the Bloch sphere to visualize these states.

Measurement

ÈΨ\
ÈΨ0\

ÈΨ1\

Α

d0

d1

|〈ψ1|ψ2〉|2 =
1
2
(1 + ~r1 · ~r2)

Pr[|ψ0〉 given |ψ〉] = |〈ψ0|ψ〉|2

=
1 + cosα

2

=
d1

2

Pr[|ψ1〉 given |ψ〉] = |〈ψ1|ψ〉|2

=
1− cosα

2
=
d0

2



Introduction Classical RACs Quantum RACs Numerical results Symmetric constructions Summary

Bloch sphere
Alice encodes a classical bit string into a qubit state and sends it
to Bob. We will use the Bloch sphere to visualize these states.

Measurement

ÈΨ\
ÈΨ0\

ÈΨ1\

Α

d0

d1

|〈ψ1|ψ2〉|2 =
1
2
(1 + ~r1 · ~r2)

Pr[|ψ0〉 given |ψ〉] = |〈ψ0|ψ〉|2

=
1 + cosα

2
=
d1

2

Pr[|ψ1〉 given |ψ〉] = |〈ψ1|ψ〉|2

=
1− cosα

2
=
d0

2



Introduction Classical RACs Quantum RACs Numerical results Symmetric constructions Summary

Bloch sphere
Alice encodes a classical bit string into a qubit state and sends it
to Bob. We will use the Bloch sphere to visualize these states.

Measurement

ÈΨ\
ÈΨ0\

ÈΨ1\

Α

d0

d1

|〈ψ1|ψ2〉|2 =
1
2
(1 + ~r1 · ~r2)

Pr[|ψ0〉 given |ψ〉] = |〈ψ0|ψ〉|2

=
1 + cosα

2
=
d1

2

Pr[|ψ1〉 given |ψ〉] = |〈ψ1|ψ〉|2

=
1− cosα

2
=
d0

2



Introduction Classical RACs Quantum RACs Numerical results Symmetric constructions Summary

Known results

Pure strategies

Only two specific QRACs are known when pure quantum strategies
are allowed. That means:

1. Alice prepares a pure state,

2. Bob uses a projective measurement (not a POVM),

3. the worst case success probability must be at least 1
2 .

Note: shared randomness is not allowed.
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Known QRACs

2
p7→ 1 code

There is a 2
p7→ 1 code with p = 1

2 + 1
2
√

2
≈ 0.85.

This code is optimal. [quant-ph/9804043]

x

y

z
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http://arxiv.org/abs/quant-ph/9804043
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Known QRACs

3
p7→ 1 code

There is a 3
p7→ 1 code with p = 1

2 + 1
2
√

3
≈ 0.79.

This code is optimal. [I.L. Chuang]
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Known QRACs

4
p7→ 1 code

There is no 4
p7→ 1 code for p > 1

2 .
Proof idea – it is not possible to cut the surface of the Bloch
sphere into 16 parts with 4 planes passing through its center.
[quant-ph/0604061]

http://arxiv.org/abs/quant-ph/0604061
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What can we do about this?

Use shared randomness!
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Different kinds of quantum RACs

Definition
Pure quantum n 7→ 1 RAC is an ordered tuple (E,M1, . . . ,Mn)
that consists of encoding function E : {0, 1}n 7→ C2 and n
orthogonal measurements: Mi =

{∣∣ψi0〉 , ∣∣ψi1〉}.
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Definition
Pure quantum n 7→ 1 RAC is an ordered tuple (E,M1, . . . ,Mn)
that consists of encoding function E : {0, 1}n 7→ C2 and n
orthogonal measurements: Mi =

{∣∣ψi0〉 , ∣∣ψi1〉}.

Definition
Mixed quantum n 7→ 1 RAC is an ordered tuple
(PE , PM1 , . . . , PMn) of probability distributions. PE is a
distribution over encoding functions E and PMi are probability
distributions over orthogonal measurements of qubit.
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Different kinds of quantum RACs

Definition
Pure quantum n 7→ 1 RAC is an ordered tuple (E,M1, . . . ,Mn)
that consists of encoding function E : {0, 1}n 7→ C2 and n
orthogonal measurements: Mi =

{∣∣ψi0〉 , ∣∣ψi1〉}.

Definition
Quantum n 7→ 1 RAC with shared randomness is a probability
distribution over pure quantum RACs.
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Finding QRACs with SR

Recall
Let ~r1 and ~r2 be the Bloch vectors corresponding to qubit states
|ψ1〉 and |ψ2〉. Then |〈ψ1|ψ2〉|2 = 1

2(1 + ~r1 · ~r2).

Qubit (C2) ⇒ Bloch sphere (R3)

I encoding of string x ∈ {0, 1}n: |E(x)〉 ⇒ ~rx,

I measurement of the ith bit:
{∣∣ψi0〉 , ∣∣ψi1〉}⇒ {~vi,−~vi}.

Optimize

The average success probability is:

p({~vi} , {~rx}) =
1

2n · n
∑

x∈{0,1}n

n∑
i=1

1 + (−1)xi~vi · ~rx
2
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Optimal quantum encoding

Probability

p({~vi} , {~rx}) =
1

2n · n
∑

x∈{0,1}n

n∑
i=1

1 + (−1)xi~vi · ~rx
2

Observe

max
{~vi},{~rx}

∑
x∈{0,1}n

(
~rx ·

n∑
i=1

(−1)xi~vi

)
= max
{~vi}

∑
x∈{0,1}n

∥∥∥∥∥
n∑
i=1

(−1)xi~vi

∥∥∥∥∥
Optimal encoding

Given {~vi}, optimal encoding of x is a unit vector ~rx in direction of
n∑
i=1

(−1)xi~vi

Note: if all ~vi are equal, this corresponds to the optimal classical
(majority) encoding.
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Upper bound

Success probability using optimal encoding

p({~vi}) =
1
2

(
1 +

1
2n · n

∑
a∈{1,−1}n

∥∥∥∥∥
n∑
i=1

ai~vi

∥∥∥∥∥
)
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ai~vi
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)

Lemma
For any unit vectors ~v1, . . . , ~vn we have:∑

a1,...,an∈{1,−1}

‖a1~v1 + · · ·+ an~vn‖2 = n · 2n
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Lemma
For any unit vectors ~v1, . . . , ~vn we have:∑

a1,...,an∈{1,−1}

‖a1~v1 + · · ·+ an~vn‖2 = n · 2n

Think of this as a generalization of the parallelogram identity

‖~v1 + ~v2‖2 + ‖~v1 − ~v2‖2 = 2
(
‖~v1‖2 + ‖~v2‖2

)
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Upper bound
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ai~vi

∥∥∥∥∥
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Lemma
For any unit vectors ~v1, . . . , ~vn we have:∑

a1,...,an∈{1,−1}

‖a1~v1 + · · ·+ an~vn‖2 = n · 2n

To remove the square, use inequality that follows form (x−y)2 ≥ 0:

xy ≤ 1
2
(x2 + y2)
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For any unit vectors ~v1, . . . , ~vn we have:∑

a1,...,an∈{1,−1}

‖a1~v1 + · · ·+ an~vn‖ ≤
√
n · 2n
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Theorem

For any n
p7→ 1 QRAC with shared randomness: p ≤ 1

2
+

1
2
√
n

.
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For any unit vectors ~v1, . . . , ~vn we have:∑
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‖a1~v1 + · · ·+ an~vn‖ ≤
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Theorem

For any n
p7→ 1 QRAC with shared randomness: p ≤ 1

2
+

1
2
√
n

.

Note: this holds even if Bob can use a POVM measurement.
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Lower bound

Success probability using optimal encoding
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∑
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Lower bound

Success probability using optimal encoding
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1 +

1
2n · n

∑
a∈{1,−1}n

∥∥∥∥∥
n∑
i=1

ai~vi

∥∥∥∥∥
)

Random measurements
Alice and Bob can sample each ~vi at random. This can be done
near uniformly given enough shared randomness. Observe

E
{~vi}

 ∑
a∈{1,−1}n

∥∥∥∥∥
n∑
i=1

ai~vi

∥∥∥∥∥
 = 2n · E

{~vi}

∥∥∥∥∥
n∑
i=1

~vi

∥∥∥∥∥
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E
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(
1 +

1
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· E
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~vi
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Random measurements
Alice and Bob can sample each ~vi at random. This can be done
near uniformly given enough shared randomness. Observe

E
{~vi}

 ∑
a∈{1,−1}n

∥∥∥∥∥
n∑
i=1

ai~vi

∥∥∥∥∥
 = 2n · E

{~vi}

∥∥∥∥∥
n∑
i=1

~vi

∥∥∥∥∥
What is the average distance traveled in 3D after n steps of unit
length if the direction of each step is chosen uniformly at random?
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Lower bound

Success probability using random measurements

E
{~vi}

p({~vi}) =
1
2

(
1 +

1
n
· E
{~vi}

∥∥∥∥∥
n∑
i=1

~vi

∥∥∥∥∥
)

Random walk
Probability density to arrive at point ~R after performing n� 1
steps of random walk [Chandrasekhar 1943]:

W (~R) =
(

3
2πn

)3/2

e−3‖~R‖2/2n
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Lower bound

Success probability using random measurements

E
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i=1
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Random walk
Probability density to arrive at point ~R after performing n� 1
steps of random walk [Chandrasekhar 1943]:

W (~R) =
(

3
2πn

)3/2

e−3‖~R‖2/2n

Thus the average distance traveled is∫ ∞
0

4πR2 ·R ·W (R) · dR = 2

√
2n
3π
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Lower bound

Success probability using random measurements

E
{~vi}

p({~vi}) =
1
2

+

√
2

3πn

Random walk
Probability density to arrive at point ~R after performing n� 1
steps of random walk [Chandrasekhar 1943]:

W (~R) =
(

3
2πn

)3/2

e−3‖~R‖2/2n

Thus the average distance traveled is∫ ∞
0

4πR2 ·R ·W (R) · dR = 2

√
2n
3π
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Lower bound

Success probability using random measurements

E
{~vi}

p({~vi}) =
1
2

+

√
2

3πn

Theorem

There exists n
p7→ 1 QRAC with SR such that p =

1
2

+
√

2
3πn

.
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Quantum upper and lower bounds

2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

0.65

0.70

0.75

0.80

0.85

0.90

0.95

pHnL

Black dots correspond to a lower bound obtained using measurements on

orthogonal Bloch vectors.



Introduction Classical RACs Quantum RACs Numerical results Symmetric constructions Summary

Quantum upper and lower bounds

2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

0.65

0.70

0.75

0.80

0.85

0.90

0.95

pHnL

Black dots correspond to a lower bound obtained using measurements on

orthogonal Bloch vectors.



Introduction Classical RACs Quantum RACs Numerical results Symmetric constructions Summary

Results of numerical optimization
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Results of numerical optimization

See our homepage

http://home.lanet.lv/∼sd20008/RAC/RACs.htm

http://home.lanet.lv/~sd20008/RAC/RACs.htm
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Numerical 2 7→ 1 QRAC

p =
1
2

+
1

2
√

2
≈ 0.8535533906
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Numerical 3 7→ 1 QRAC

p =
1
2

+
1

2
√

3
≈ 0.7886751346
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Numerical 4 7→ 1 QRAC

p =
1
2

+
1 +
√

3
8
√

2
≈ 0.7414814566
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Numerical 5 7→ 1 QRAC

p =
1
2

+
1
20

√
2(5 +

√
17) ≈ 0.7135779205
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Numerical 6 7→ 1 QRAC

p =
1
2

+
2 +
√

3 +
√

15
16
√

6
≈ 0.6940463870
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Numerical 9 7→ 1 QRAC

p =
1
2

+
192 + 10

√
3 + 9

√
11 + 3

√
19

384
≈ 0.6568927813
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Numerical 15 7→ 1 QRAC

p = 1
2+152

√
3+100

√
11+50

√
19+20

√
35+5

√
43+2

√
51+
√

59
8192 ≈ 0.6203554614
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Symmetric (but not optimal)
constructions
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Symmetric 4 7→ 1 QRAC

p =
1
2

+
2 +
√

3
16

≈0.7332531755

≤0.7414814566
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Symmetric 6 7→ 1 QRAC

p =
1
2

+
√

5
32

+
1
96

√
75 + 30

√
5 ≈0.6940418856

≤0.6940463870
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Symmetric 9 7→ 1 QRAC

p ≈0.6563927998
≤0.6568927813
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Symmetric 15 7→ 1 QRAC

p ≈0.6201829084
≤0.6203554614
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Summary
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Summary

Classical RACs with SR

I exact success probability of optimal RAC:

p(2m) = p(2m+ 1) =
1
2

+
1

22m+1

(
2m
m

)
,

I asymptotic success probability: p(n) ≈ 1
2

+
1√
2πn

.

Quantum RACs with SR

I upper bound: p(n) ≤ 1
2

+
1

2
√
n

,

I lower bound: p(n) ≥ 1
2

+
√

2
3πn

.
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Comparison of classical and quantum RACs with SR

2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

0.6

0.7

0.8

0.9

pHnL

White dots correspond to QRACs obtained using numerical optimization.

Black dots correspond to optimal classical RAC.
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Open problems

Optimality

Prove the optimality of any of the numerically obtained n 7→ 1
QRACs with SR for n ≥ 4.

Lower bound
Give a lower bound of success probability of (3n) 7→ 1 QRAC with
SR using n measurements along each coordinate axis (this requires
less SR than random measurements).

Generalizations
What happens if we. . .

I use a qudit instead of a qubit (consider also classical case),

I allow m > 1 (consider classical and quantum n
p7→ m RACs),

I allow POVM measurements (for m = 1 does not help),

I allow shared entanglement?
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Generalizations
What happens if we. . .

I use a qudit instead of a qubit (consider also classical case),

I allow m > 1 (consider classical and quantum n
p7→ m RACs),

I allow POVM measurements (for m = 1 does not help),

I allow shared entanglement?
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Another open problem. . .
[Biosphere, Montreal]

Is this a QRAC?
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Thank you for your attention!
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